当正切值(tana)等于-1时,我们可以通过查找正切函数的性质来确定相应的角度。
正切函数(tan)是周期函数,其周期为π(180度)。这意味着tan(θ) = tan(θ + kπ),其中k是任意整数。
对于tan(θ) = -1,我们知道tan(45°) = 1,因为45度是等腰直角三角形的角。由于tan函数在第二象限和第四象限是负的,所以当角度超过45度并在第二象限或第四象限时,tan值将是负的。
在第二象限,tan值是负的,且tan(135°) = -1,因为135度是180度减去45度。在第四象限,tan值也是负的,但tan(315°) = -1,因为315度是360度减去45度。
因此,当tana等于-1时,对应的角度可以是135度或315度。这两个角度都是45度的奇数倍,因为tan(45°) = 1,而tan(135°)和tan(315°)都是-1。